Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Undecacarbonyl(methylcyclopenta-dienyl)-tetrahedro-triiridiummolybdenum, undecacarbonyl(tetramethyl-cyclopentadienyl)-tetrahedro-triiridiummolybdenum and undeca-carbonyl(pentamethylcyclopenta-dienyl)-tetrahedro-triiridiummolybdenum

Nigel T. Lucas, Ian R. Whittall and Mark G. Humphrey*

Department of Chemistry, Australian National University, Canberra ACT 0200, Australia
Correspondence e-mail: mark.humphrey@anu.edu.au

Received 25 October 2001
Accepted 29 November 2001
Online 21 March 2002
The three title compounds tri- μ-carbonyl-1:2 $\kappa^{2} C ; 1: 3 \kappa^{2}$ $C ; 2: 3 \kappa^{2} C$-octacarbonyl- $1 \kappa C, 2 \kappa^{2} C, 3 \kappa^{2} C, 4 \kappa^{3} C$ - η^{5}-methylcyclo-pentadienyl-tetrahedro-triiridiummolybdenum (3 Ir $-\operatorname{Ir}$)(3 IrMo), tri- μ-carbonyl-1:2 $\kappa^{2} C ; 1: 3 \kappa^{2} C ; 2: 3 \kappa^{2} C$-octacarbonyl- $1 \kappa C$, $2 \kappa^{2} C, 3 \kappa^{2} C, 4 \kappa^{3} C-\eta^{5}$-tetramethylcyclopentadienyl-tetrahedrotriiridiummolybdenum ($3 \mathrm{Ir}-\mathrm{Ir}$) $(3 \mathrm{Ir}-\mathrm{Mo}$) and tri- μ-car-bonyl-1:2 $\kappa^{2} C ; 1: 3 \kappa^{2} C ; 2: 3 \kappa^{2} C$-octacarbonyl- $1 \kappa C, 2 \kappa^{2} C, 3 \kappa^{2} C$,$4 \kappa^{3} \mathrm{C}-\eta^{5}$-pentamethylcyclopentadienyl-tetrahedro-triiridiummolybdenum $(3 \operatorname{Ir}-\operatorname{Ir})(3 \mathrm{Ir}-\mathrm{Mo})$, $\left[\mathrm{MoIr}_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5-n} \mathrm{Me}_{n}\right)\right.$ -$(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{8}$], where $n=1,4$ or 5 , have a pseudotetrahedral MoIr $_{3}$ core geometry, with a $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5-n} \mathrm{Me}_{n}$ group ligating the Mo atom, bridging carbonyls spanning the edges of an MoIr_{2} face, and eight terminally bound carbonyls.

Comment

The title compounds, (I), (II) and (III), have been prepared as part of a general study of tetrahedral mixed-group Ir_{6} cluster complexes (Lee et al., 1993; Waterman et al., 1996, 1998, 1999; Waterman \& Humphrey, 1999; Lucas et al., 2001). Alkylcyclopentadienyl ligands provide flexibility in tuning the electronic and/or steric properties of a complex, which should modify physical properties and derivative chemistry. The chemistry of the cyclopentadienyl analogues of (I), (II) and (III) have been examined in depth; the title compounds have been prepared to broaden this study.

Complexes (I), (II) and (III), shown in Figs. 1, 2 and 3, respectively, all possess pseudo-tetrahedral core geometry and a general ligand disposition of the cyclopentadienyl-ligated analogue $\left[\operatorname{MoIr}_{3}(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{8}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (Churchill et al.,
1986). A second crystal form of (III) has been identified recently (Lucas et al., 2002); metrical differences to the form

(I) $R_{1}=\mathrm{H} ; R_{2}=\mathrm{Me}$
(II) $R_{1}=\mathrm{Me} ; R_{2}=\mathrm{H}$
(III) $R_{1}=R_{2}=\mathrm{Me}$
reported herein are minor [Ir1-Ir3 2.705 (1) versus 2.7172 (6) \AA in (III); Ir1-Mo4 2.869 (2) versus 2.860 (1) \AA in (III)]. Core $\mathrm{Ir}-\mathrm{Ir}$ and $\mathrm{Mo}-\mathrm{Ir}$ bond distances for (I)-(III) fall in the ranges 2.6802 (8)-2.7172 (6) and 2.832 (1)-2.907 (1) \AA, respectively, with no systematic trends on increasing alkylcyclopentadienyl ligand bulk and electron-donating characteristics. Within each structure, the non-bridged Ir3-Mo4 bond $[2.897(1)-2.907(1) \AA$] is significantly longer than the other two carbonyl-bridged $\mathrm{Ir}-\mathrm{Mo}$ bonds [2.832 (1)2.867 (1) \AA] and the angles subtended at Mo4 [55.75 (3)$57.02(3)^{\circ}$] are significantly smaller than those at the iridium vertices [59.58(2)-63.14 (3) ${ }^{\circ}$]. The alkylcyclopentadienyl groups are inclined toward the MoIr_{2} faces spanned by the bridging carbonyls and are trans to the long Ir3-Mo4 bond. Curtis and co-workers have defined an asymmetry parameter

Figure 1
The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms are represented as spheres of arbitrary radii.

Figure 2
The molecular structure of (II) showing 30% probability displacement ellipsoids. H atoms are represented as spheres of arbitrary radii.
α to evaluate semi-bridging character (Klingler et al., 1978; Curtis et al., 1980), with values of α between 0.1 and 0.6 corresponding to semi-bridging. The Mo4-bound $\mathrm{CO}(41)$ carbonyl is semi-bridging with Ir3 [Mo4-C41-O41 169 (1)173 (1) $)^{\circ}$ and Ir3 \cdots C41 2.79 (1)-2.87 (1) $\left.\AA ; \alpha=0.43-0.48\right]$. Increasing the number of methyl groups in the cyclopentadienyl ligand [in proceeding from (I) to (II) and thence (III)] results in increasingly unsymmetrical carbonyls bridging the $\mathrm{Ir}-\mathrm{Mo}$ bonds. Bridging carbonyls are more efficient at removing electron density from metal centres, and the decreasing Mo-CO distances on increasing both steric bulk and electron-donating properties of the alkylcyclopentadienyl ligands suggests that electronic factors dominate over steric considerations for this ligand disposition.

Figure 3

The molecular structure of (III) showing 30% probability displacement ellipsoids. H atoms are represented as spheres of arbitrary radii.

Experimental

The syntheses of (I), (II) and (III) were carried out according to the literature procedure of Lucas et al. (2002). Crystals were obtained by slow diffusion of methanol, for (I), or ethanol, for (II) and (III), into dichloromethane solutions of the complexes at 276 K .

Compound (I)

Crystal data

$\left[\mathrm{MoIr}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)(\mathrm{CO})_{11}\right]$
$M_{r}=1059.84$
Orthorhombic, $P b c a$
$a=12.287$ (4) \AA
$b=14.352$ (4) \AA
$c=24.719$ (3) \AA
$V=4359(2) \AA^{3}$
$Z=8$
$D_{x}=3.230 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-6S diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.006, T_{\text {max }}=0.151$
4329 measured reflections
3850 independent reflections
2961 reflections with $I>1.5 \sigma(I)$

Refinement

Refinement on F
$R=0.034$
$w R=0.034$
$S=1.55$
2961 reflections
290 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0001\left|F_{o}\right|^{2}\right]$

Compound (II)

Crystal data

$\left[\mathrm{MoIr}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{13}\right)(\mathrm{CO})_{11}\right]$
$M_{r}=1101.92$
Orthorhombic, Pbca
$a=11.543$ (5) A
$b=17.198$ (9) \AA
$c=25.382(6) \AA$
$V=5039(3) \AA^{3}$
$Z=8$
$D_{x}=2.905 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-6S diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.023, T_{\text {max }}=0.048$
4985 measured reflections
4459 independent reflections
3219 reflections with $I>1.5 \sigma(I)$

Refinement

Refinement on F
$R=0.038$
$w R=0.034$
$S=1.31$
3219 reflections
317 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0001\left|F_{o}\right|^{2}\right]$

Mo $K \alpha$ radiation
Cell parameters from 23 reflections
$\theta=2.8-17.4^{\circ}$
$\mu=18.93 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Plate, orange
$0.30 \times 0.25 \times 0.10 \mathrm{~mm}$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 14$
$k=0 \rightarrow 17$
$l=0 \rightarrow 29$
3 standard reflections every 150 reflections intensity decay: 6.7\%
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.21 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1967)

Extinction coefficient: $2.10(4) \times 10^{-7}$

Mo $K \alpha$ radiation
Cell parameters from 18 reflections
$\theta=10.1-14.8^{\circ}$
$\mu=16.38 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Prism, orange
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$
$\theta_{\text {max }}=25.1^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 20$
$l=0 \rightarrow 30$
3 standard reflections every 150 reflections intensity decay: 8.7\%
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.33 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.21 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1967)

Extinction coefficient: $1.62(3) \times 10^{-7}$

Compound (III)

Crystal data

$\left[\mathrm{MoIr}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)(\mathrm{CO})_{11}\right]$
$M_{r}=1115.94$
Monoclinic, $P n$
$a=10.922$ (3) A
$b=10.226$ (2) \AA
$c=11.725$ (2) \AA
$\beta=104.64$ (2) ${ }^{\circ}$
$V=1267.1(5) \AA^{3}$
$Z=2$

Data collection

Rigaku AFC-6S diffractometer

 $\omega-2 \theta$ scansAbsorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.025, T_{\text {max }}=0.038$
2512 measured reflections
2372 independent reflections
2326 reflections with $I>\sigma(I)$
$D_{x}=2.925 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 25
reflections
$\theta=15.2-18.2^{\circ}$
$\mu=16.29 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Prism, orange
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

Refinement

Refinement on F
$R=0.019$
$w R=0.022$
$S=1.39$
2326 reflections
324 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0001\left|F_{o}\right|^{2}\right]$

Table 1
A comparison of selected geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

	(I)	(II)	(III)
Ir1-Ir2	$2.7061(8)$	$2.6802(8)$	$2.7011(6)$
Ir1-Ir3	$2.6993(6)$	$2.7014(8)$	$2.7172(6)$
Ir2-Ir3	$2.692(1)$	$2.694(1)$	$2.7070(6)$
Ir1-Mo4	$2.832(1)$	$2.858(1)$	$2.860(1)$
Ir2-Mo4	$2.837(1)$	$2.853(1)$	$2.867(1)$
Ir3-Mo4	$2.897(1)$	$2.907(1)$	$2.905(1)$
Ir1-C11	$1.93(1)$	$1.90(2)$	$1.89(1)$
Ir1-C12	$2.13(1)$	$2.11(1)$	$2.10(1)$
Ir1-C14	$2.20(1)$	$2.16(1)$	$2.19(1)$
Ir1-C15	$1.91(1)$	$1.86(1)$	$1.89(1)$
Ir2-C12	$2.11(1)$	$2.08(1)$	$2.13(1)$
Ir2-C21	$1.88(1)$	$1.89(1)$	$1.86(1)$
Ir2-C22	$1.88(1)$	$1.89(1)$	$1.87(1)$
Ir2-C24	$2.15(1)$	$2.21(1)$	$2.19(1)$
Ir3-C31	$1.90(1)$	$1.89(2)$	$1.87(2)$
Ir3-C32	$1.93(1)$	$1.93(1)$	$1.92(1)$
Ir3-C33	$1.95(1)$	$1.94(2)$	$1.93(1)$
Ir3. -C41	$2.82(1)$	$2.87(1)$	$2.79(1)$
Mo4-C14	$2.17(1)$	$2.11(1)$	$2.12(1)$
Mo4-C24	$2.16(1)$	$2.14(1)$	$2.12(1)$
Mo4-C41	$1.95(1)$	$1.94(1)$	$1.95(1)$
Ir2-Ir1-Ir3	$60.06(3)$	$59.73(2)$	$59.95(2)$
Ir2-Ir1-Mo4	$61.93(3)$	$61.58(3)$	$61.99(3)$
Ir3-Ir1-Mo4	$62.97(3)$	$63.12(3)$	$62.72(2)$
Ir1-Ir2-Ir3	$60.36(2)$	$60.01(2)$	$60.32(2)$
Ir1-Ir2-Mo4	$62.09(3)$	$61.40(3)$	$61.72(2)$
Ir3-Ir2-Mo4	$63.12(3)$	$63.14(3)$	$62.74(2)$
Ir1-Ir3-Ir2	$59.58(2)$	$60.26(2)$	$59.73(2)$
Ir1-Ir3-Mo4	$61.14(3)$	$60.68(2)$	$61.04(2)$
Ir2-Ir3-Mo4	$61.12(3)$	$60.88(3)$	$61.32(3)$
Ir1-Mo4-Ir2	$55.98(3)$	$57.02(3)$	$56.29(2)$
Ir1-Mo4-Ir3	$55.89(2)$	$56.20(2)$	$56.24(2)$
Ir2-Mo4-Ir3	$55.75(3)$	$55.98(3)$	$55.94(2)$

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). DIRDIF. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Churchill, M. R., Li, Y.-J., Shapley, J. R., Foose, D. S. \& Uchiyama, W. S. (1986). J. Organomet. Chem. 312, 121-131.

Curtis, M. D., Han, K. R. \& Butler, W. M. (1980). Inorg. Chem. 19, 2096-2101.
Klingler, J. C., Butler, W. M. \& Curtis, M. D. (1978). J. Am. Chem. Soc. 100, 5034-5039.
Lee, J., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. \& White, A. H. (1993). Organometallics, 12, 3468-3473.

Lucas, N. T., Blitz, J. P., Petrie, S., Stranger, R., Humphrey, M. G., Heath, G. A. \& Otieno-Alego, V. (2002). In preparation.
Lucas, N. T., Humphrey, M. G. \& Rae, A. D. (2001). Macromolecules, 34, 61886195.

Molecular Structure Corporation (1985). TEXSAN. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992-1997). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Waterman, S. M. \& Humphrey, M. G. (1999). Organometallics, 18, 3116-3127.
Waterman, S. M., Humphrey, M. G., Lee, J., Ball, G. E. \& Hockless, D. C. R. (1999). Organometallics, 18, 2440-2451.

Waterman, S. M., Humphrey, M. G., Tolhurst, V.-A., Bruce, M. I., Low, P. J. \& Hockless, D. C. R. (1998). Organometallics, 17, 5789-5795.
Waterman, S. M., Humphrey, M. G., Tolhurst, V.-A., Skelton, B. W., White, A. H. \& Hockless, D. C. R. (1996). Organometallics, 15, 934-940.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

